Chimeric Pneumoviridae fusion proteins as immunogens to induce cross‐neutralizing antibody responses
نویسندگان
چکیده
Human respiratory syncytial virus (hRSV) and human metapneumovirus (hMPV), two members of the Pneumoviridae family, account for the majority of severe lower respiratory tract infections worldwide in very young children. They are also a frequent cause of morbidity and mortality in the elderly and immunocompromised adults. High levels of neutralizing antibodies, mostly directed against the viral fusion (F) glycoprotein, correlate with protection against either hRSV or hMPV However, no cross-neutralization is observed in polyclonal antibody responses raised after virus infection or immunization with purified F proteins. Based on crystal structures of hRSV F and hMPV F, we designed chimeric F proteins in which certain residues of well-characterized antigenic sites were swapped between the two antigens. The antigenic changes were monitored by ELISA with virus-specific monoclonal antibodies. Inoculation of mice with these chimeras induced polyclonal cross-neutralizing antibody responses, and mice were protected against challenge with the virus used for grafting of the heterologous antigenic site. These results provide a proof of principle for chimeric fusion proteins as single immunogens that can induce cross-neutralizing antibody and protective responses against more than one human pneumovirus.
منابع مشابه
Designing and Expression of Recombinant Chimeric Protein Containing CtxB and OmpW from Vibrio Cholerae and Evaluation of Its Immunogenicity
Background: Cholera disease caused by Vibrio cholerae remains a major cause of morbidity and mortality throughout the world. Various strategies with different proteins as immunogens have been tried for vaccine development, none of which have been sufficiently effective to preclude cholera. Chimeric proteins, with their ability to present multiple antigens at the same time, can play important ro...
متن کاملEnhanced Immunogenicity of HIV-1 Envelope gp140 Proteins Fused to APRIL
Current HIV-1 vaccines based on the HIV-1 envelope glycoprotein spike (Env), the only relevant target for broadly neutralizing antibodies, are unable to induce protective immunity. Env immunogenicity can be enhanced by fusion to costimulatory molecules involved in B cell activation, such as APRIL and CD40L. Here, we found that Env-APRIL signaled through the two receptors, BCMA and TACI. In rabb...
متن کاملSoluble HIV-1 Envelope Immunogens Derived from an Elite Neutralizer Elicit Cross-Reactive V1V2 Antibodies and Low Potency Neutralizing Antibodies
We evaluated four gp140 Envelope protein vaccine immunogens that were derived from an elite neutralizer, subject VC10042, whose plasma was able to potently neutralize a wide array of genetically distinct HIV-1 isolates. We sought to determine whether soluble Envelope proteins derived from the viruses circulating in VC10042 could be used as immunogens to elicit similar neutralizing antibody resp...
متن کاملA Chimeric Pneumovirus Fusion Protein Carrying Neutralizing Epitopes of Both MPV and RSV
Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are paramyxoviruses that are responsible for substantial human health burden, particularly in children and the elderly. The fusion (F) glycoproteins are major targets of the neutralizing antibody response and studies have mapped dominant antigenic sites in F. Here we grafted a major neutralizing site of RSV F, recognized by the ...
متن کاملHuman rhinovirus type 14:human immunodeficiency virus type 1 (HIV-1) V3 loop chimeras from a combinatorial library induce potent neutralizing antibody responses against HIV-1.
In an effort to develop a useful AIDS vaccine or vaccine component, we have generated a combinatorial library of chimeric viruses in which the sequence IGPGRAFYTTKN from the V3 loop of the MN strain of human immunodeficiency virus type 1 (HIV-1) is displayed in many conformations on the surface of human rhinovirus 14 (HRV14). The V3 loop sequence was inserted into a naturally immunogenic site o...
متن کامل